Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cloacal bacterial communities of tree swallows (Tachycineta bicolor): Similarity within a population, but not between pair-bonded social partners.

Identifieur interne : 000043 ( Main/Exploration ); précédent : 000042; suivant : 000044

Cloacal bacterial communities of tree swallows (Tachycineta bicolor): Similarity within a population, but not between pair-bonded social partners.

Auteurs : Jessica Hernandez [États-Unis] ; Camilo Escall N [États-Unis] ; Daniel Medina [États-Unis] ; Ben J. Vernasco [États-Unis] ; Jenifer B. Walke [États-Unis] ; Lisa K. Belden [États-Unis] ; Ignacio T. Moore [États-Unis]

Source :

RBID : pubmed:32045456

Descripteurs français

English descriptors

Abstract

Host-associated microbial communities can influence the overall health of their animal hosts, and many factors, including behavior and physiology, can impact the formation of these complex communities. Bacteria within these communities can be transmitted socially between individuals via indirect (e.g., shared environments) or direct (e.g., physical contact) pathways. Limited research has been done to investigate how social interactions that occur in the context of mating shape host-associated microbial communities. To gain a better understanding of these interactions and, more specifically, to assess how mating behavior shapes an animal's microbiome, we studied the cloacal bacterial communities of a socially monogamous yet genetically polygynous songbird, the North American tree swallow (Tachycineta bicolor). We address two questions: (1) do the cloacal bacterial communities differ between female and male tree swallows within a population? and (2) do pair-bonded social partners exhibit more similar cloacal bacterial communities than expected by chance? To answer these questions, we sampled the cloacal microbiome of adults during the breeding season and then used culture-independent, 16S rRNA gene amplicon sequencing to assess bacterial communities. Overall, we found that the cloacal bacterial communities of females and males were similar, and that the communities of pair-bonded social partners were not more similar than expected by chance. Our results suggest that social monogamy does not correlate with an increased similarity in cloacal bacterial community diversity or structure. As social partners were not assessed at the same time, it is possible that breeding stage differences masked social effects on bacterial community diversity and structure. Further, given that tree swallows exhibit high variation in rates of extra-pair activity, considering extra-pair activity when assessing cloacal microbial communities may be important for understanding how these bacterial communities are shaped. Further insight into how bacterial communities are shaped will ultimately shed light on potential tradeoffs associated with alternative behavioral strategies and socially-transmitted microbes.

DOI: 10.1371/journal.pone.0228982
PubMed: 32045456
PubMed Central: PMC7012431


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cloacal bacterial communities of tree swallows (Tachycineta bicolor): Similarity within a population, but not between pair-bonded social partners.</title>
<author>
<name sortKey="Hernandez, Jessica" sort="Hernandez, Jessica" uniqKey="Hernandez J" first="Jessica" last="Hernandez">Jessica Hernandez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Escall N, Camilo" sort="Escall N, Camilo" uniqKey="Escall N C" first="Camilo" last="Escall N">Camilo Escall N</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Medina, Daniel" sort="Medina, Daniel" uniqKey="Medina D" first="Daniel" last="Medina">Daniel Medina</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vernasco, Ben J" sort="Vernasco, Ben J" uniqKey="Vernasco B" first="Ben J" last="Vernasco">Ben J. Vernasco</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walke, Jenifer B" sort="Walke, Jenifer B" uniqKey="Walke J" first="Jenifer B" last="Walke">Jenifer B. Walke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Belden, Lisa K" sort="Belden, Lisa K" uniqKey="Belden L" first="Lisa K" last="Belden">Lisa K. Belden</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moore, Ignacio T" sort="Moore, Ignacio T" uniqKey="Moore I" first="Ignacio T" last="Moore">Ignacio T. Moore</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32045456</idno>
<idno type="pmid">32045456</idno>
<idno type="doi">10.1371/journal.pone.0228982</idno>
<idno type="pmc">PMC7012431</idno>
<idno type="wicri:Area/Main/Corpus">000039</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000039</idno>
<idno type="wicri:Area/Main/Curation">000039</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000039</idno>
<idno type="wicri:Area/Main/Exploration">000039</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cloacal bacterial communities of tree swallows (Tachycineta bicolor): Similarity within a population, but not between pair-bonded social partners.</title>
<author>
<name sortKey="Hernandez, Jessica" sort="Hernandez, Jessica" uniqKey="Hernandez J" first="Jessica" last="Hernandez">Jessica Hernandez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Escall N, Camilo" sort="Escall N, Camilo" uniqKey="Escall N C" first="Camilo" last="Escall N">Camilo Escall N</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Medina, Daniel" sort="Medina, Daniel" uniqKey="Medina D" first="Daniel" last="Medina">Daniel Medina</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vernasco, Ben J" sort="Vernasco, Ben J" uniqKey="Vernasco B" first="Ben J" last="Vernasco">Ben J. Vernasco</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walke, Jenifer B" sort="Walke, Jenifer B" uniqKey="Walke J" first="Jenifer B" last="Walke">Jenifer B. Walke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Belden, Lisa K" sort="Belden, Lisa K" uniqKey="Belden L" first="Lisa K" last="Belden">Lisa K. Belden</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moore, Ignacio T" sort="Moore, Ignacio T" uniqKey="Moore I" first="Ignacio T" last="Moore">Ignacio T. Moore</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Cloaca (microbiology)</term>
<term>Female (MeSH)</term>
<term>Male (MeSH)</term>
<term>Microbiota (MeSH)</term>
<term>RNA, Bacterial (genetics)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Reproduction (MeSH)</term>
<term>Swallows (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN bactérien (génétique)</term>
<term>ARN ribosomique 16S (génétique)</term>
<term>Animaux (MeSH)</term>
<term>Bactéries (classification)</term>
<term>Bactéries (génétique)</term>
<term>Cloaque (microbiologie)</term>
<term>Femelle (MeSH)</term>
<term>Hirondelles (microbiologie)</term>
<term>Microbiote (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Reproduction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Bacterial</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN bactérien</term>
<term>ARN ribosomique 16S</term>
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Cloaque</term>
<term>Hirondelles</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Cloaca</term>
<term>Swallows</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Male</term>
<term>Microbiota</term>
<term>Reproduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Femelle</term>
<term>Microbiote</term>
<term>Mâle</term>
<term>Reproduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Host-associated microbial communities can influence the overall health of their animal hosts, and many factors, including behavior and physiology, can impact the formation of these complex communities. Bacteria within these communities can be transmitted socially between individuals via indirect (e.g., shared environments) or direct (e.g., physical contact) pathways. Limited research has been done to investigate how social interactions that occur in the context of mating shape host-associated microbial communities. To gain a better understanding of these interactions and, more specifically, to assess how mating behavior shapes an animal's microbiome, we studied the cloacal bacterial communities of a socially monogamous yet genetically polygynous songbird, the North American tree swallow (Tachycineta bicolor). We address two questions: (1) do the cloacal bacterial communities differ between female and male tree swallows within a population? and (2) do pair-bonded social partners exhibit more similar cloacal bacterial communities than expected by chance? To answer these questions, we sampled the cloacal microbiome of adults during the breeding season and then used culture-independent, 16S rRNA gene amplicon sequencing to assess bacterial communities. Overall, we found that the cloacal bacterial communities of females and males were similar, and that the communities of pair-bonded social partners were not more similar than expected by chance. Our results suggest that social monogamy does not correlate with an increased similarity in cloacal bacterial community diversity or structure. As social partners were not assessed at the same time, it is possible that breeding stage differences masked social effects on bacterial community diversity and structure. Further, given that tree swallows exhibit high variation in rates of extra-pair activity, considering extra-pair activity when assessing cloacal microbial communities may be important for understanding how these bacterial communities are shaped. Further insight into how bacterial communities are shaped will ultimately shed light on potential tradeoffs associated with alternative behavioral strategies and socially-transmitted microbes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32045456</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Cloacal bacterial communities of tree swallows (Tachycineta bicolor): Similarity within a population, but not between pair-bonded social partners.</ArticleTitle>
<Pagination>
<MedlinePgn>e0228982</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0228982</ELocationID>
<Abstract>
<AbstractText>Host-associated microbial communities can influence the overall health of their animal hosts, and many factors, including behavior and physiology, can impact the formation of these complex communities. Bacteria within these communities can be transmitted socially between individuals via indirect (e.g., shared environments) or direct (e.g., physical contact) pathways. Limited research has been done to investigate how social interactions that occur in the context of mating shape host-associated microbial communities. To gain a better understanding of these interactions and, more specifically, to assess how mating behavior shapes an animal's microbiome, we studied the cloacal bacterial communities of a socially monogamous yet genetically polygynous songbird, the North American tree swallow (Tachycineta bicolor). We address two questions: (1) do the cloacal bacterial communities differ between female and male tree swallows within a population? and (2) do pair-bonded social partners exhibit more similar cloacal bacterial communities than expected by chance? To answer these questions, we sampled the cloacal microbiome of adults during the breeding season and then used culture-independent, 16S rRNA gene amplicon sequencing to assess bacterial communities. Overall, we found that the cloacal bacterial communities of females and males were similar, and that the communities of pair-bonded social partners were not more similar than expected by chance. Our results suggest that social monogamy does not correlate with an increased similarity in cloacal bacterial community diversity or structure. As social partners were not assessed at the same time, it is possible that breeding stage differences masked social effects on bacterial community diversity and structure. Further, given that tree swallows exhibit high variation in rates of extra-pair activity, considering extra-pair activity when assessing cloacal microbial communities may be important for understanding how these bacterial communities are shaped. Further insight into how bacterial communities are shaped will ultimately shed light on potential tradeoffs associated with alternative behavioral strategies and socially-transmitted microbes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hernandez</LastName>
<ForeName>Jessica</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-7385-6174</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Escallón</LastName>
<ForeName>Camilo</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-0656-3563</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Medina</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vernasco</LastName>
<ForeName>Ben J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walke</LastName>
<ForeName>Jenifer B</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Belden</LastName>
<ForeName>Lisa K</ForeName>
<Initials>LK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moore</LastName>
<ForeName>Ignacio T</ForeName>
<Initials>IT</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012329">RNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="Y">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002988" MajorTopicYN="N">Cloaca</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="Y">Microbiota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012329" MajorTopicYN="N">RNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012098" MajorTopicYN="Y">Reproduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046388" MajorTopicYN="N">Swallows</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32045456</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0228982</ArticleId>
<ArticleId IdType="pii">PONE-D-19-23843</ArticleId>
<ArticleId IdType="pmc">PMC7012431</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19288-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Aug 29;345(6200):1048-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25170151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2017 Mar 3;5(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28253908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Aug;6(8):1621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2017 Dec 01;5(1):156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29191217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Mar 25;307(5717):1915-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15790844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2005 Jul;50(1):19-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Dec;13(12):1515-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20961376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Oct 12;338(6104):198-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23066064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2010 Jul;32(7):571-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20544735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 15;26(2):266-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19914921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2017 Feb;35:23-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27907842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 May;156(2):423-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18335251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 May 16;5:223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24904538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2019 Jun 1;95(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31069386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Mar 16;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25774601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Jan;10(1):57-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Dec 18;326(5960):1694-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19892944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Processes. 2007 Jan 10;74(1):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17118574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 11;10(9):e0137401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26360776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23391737</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Hernandez, Jessica" sort="Hernandez, Jessica" uniqKey="Hernandez J" first="Jessica" last="Hernandez">Jessica Hernandez</name>
</region>
<name sortKey="Belden, Lisa K" sort="Belden, Lisa K" uniqKey="Belden L" first="Lisa K" last="Belden">Lisa K. Belden</name>
<name sortKey="Escall N, Camilo" sort="Escall N, Camilo" uniqKey="Escall N C" first="Camilo" last="Escall N">Camilo Escall N</name>
<name sortKey="Medina, Daniel" sort="Medina, Daniel" uniqKey="Medina D" first="Daniel" last="Medina">Daniel Medina</name>
<name sortKey="Moore, Ignacio T" sort="Moore, Ignacio T" uniqKey="Moore I" first="Ignacio T" last="Moore">Ignacio T. Moore</name>
<name sortKey="Vernasco, Ben J" sort="Vernasco, Ben J" uniqKey="Vernasco B" first="Ben J" last="Vernasco">Ben J. Vernasco</name>
<name sortKey="Walke, Jenifer B" sort="Walke, Jenifer B" uniqKey="Walke J" first="Jenifer B" last="Walke">Jenifer B. Walke</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32045456
   |texte=   Cloacal bacterial communities of tree swallows (Tachycineta bicolor): Similarity within a population, but not between pair-bonded social partners.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32045456" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020